人参皂苷Rg1对游离脂肪酸诱导非酒精性脂肪肝 细胞炎症的改善作用及机制研究

肖晴 章述军 阳成 高月 徐静 朱雅莉 黄文祥* (重庆医科大学附属第一医院感染科,重庆400016)

摘要 该研究探讨人参皂苷Rg1对非酒精性脂肪性肝细胞炎症反应的作用及其分子机制。 用1 mmol/L游离脂肪酸处理HepG2和L02细胞24 h, 再用20 μg/mL或40 μg/mL人参皂苷Rg1处理6 h; 设置对照组、模型组、低剂量Rg1组、高剂量Rg1组。全自动生化仪检测各组细胞上清谷丙转氨 酶(alanine aminotransferase, ALT)、谷草转氨酶(aspartate aminotransferase, AST)的含量; 酶联免疫 吸附法测定细胞上清IL-1β、IL-6、TNF-α。RT-qPCR及Western blot检测NF-κB通路相关基因及蛋 白的改变。免疫荧光染色观察NF-κB核转移; Western blot检测各组胞质与胞核内的NF-κB P65蛋白 的表达。与对照组相比,模型组培养上清炎症指标明显增加(P<0.05); Rg1能降低炎症指标的表达 (P<0.05)。Rg1能减少游离脂肪酸诱导的NF-κB磷酸化及其下游IL-1β、IL-6、TNF-α的表达,减少 NF-κB P65从胞质向胞核的转移(P<0.05)。Rg1可通过抑制NF-κB活化减少NASH细胞模型炎症反 应,为非酒精性脂肪性肝炎的治疗提供了可能的靶点。

关键词 非酒精性脂肪性肝炎; 人参皂苷Rg1; 炎症; 核转录因子Kappa B

Effects and Mechanisms of Ginsenoside Rg1 on Free Fatty Acid Mediated Inflammation in NASH Cell Model

XIAO Qing, ZHANG Shujun, YANG Cheng, GAO Yue, XU Jing, ZHU Yali, HUANG Wenxiang* (Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China)

Abstract This work was to investigate the effect of ginsenoside Rg1 on inflammation in NASH (non-alcoholic steatohepatitis) cell model and its molecular mechanism. HepG2 cells and L02 cells were treated with 1 mmol/L FFA (free fatty acid) for 24 h, and then treated with 20 μ g/mL or 40 μ g/mL ginsenoside Rg1 for 6 h. The control group, model group, low-dose Rg1 group and high-dose Rg1 group were set. The ALT (alanine aminotransferase) and AST (aspartate aminotransferase) in supernatant were detected by automatic biochemical analyzer. IL-1 β , IL-6, TNF- α in supernatant were detected with ELISA (enzyme-linked immunosorbent assay). RT-qPCR and Western blot were used to detect alterations of genes and proteins related to NF- κ B pathway. Immunofluorescence was used to demonstrate NF- κ B P65 nuclear translocation. and Western blot was used to detect the expression of NF- κ B P65 protein in the cytoplasm and nucleus of each group. Compared with the control group, the inflammatory cytokines in supernatant of the model group were significantly increased (P<0.05). Rg1 could decrease the expressions of inflammatory indicators (P<0.05). Rg1 could down-regulate FFA activated NF- κ B phosphorylation, translocation of NF- κ B P65

收稿日期: 2019-02-26 接受日期: 2019-10-08

*通讯作者。Tel: 13883533808, Email: wenxiang_huang@163.com

Received: February 26, 2019 Accepted: October 8, 2019

重庆市渝中区科学技术局基础研究与前沿探索项目(批准号: 20190138)资助的课题

This work was supported by Basic Research and Frontier Exploration Project of Chongqing Yuzhong District Science and Technology Bureau (Grant No.20190138) *Corresponding authors. Tel: +86-13883533808, E-mail: wenxiang huang@163.com

URL: http://www.cjcb.org/arts.asp?id=5158

from cytoplasm to nucleus, and the downstream target genes of NF- κ B, including IL-1 β , IL-6 and TNF- α (*P*<0.05). Rg1 might alleviate FFA mediated inflammation in NASH cell model through inhibiting NF- κ B activation, which provided a possible target for NASH treatment.

Keywords NASH (non-alcoholic steatohepatitis); ginsenoside Rg1; inflammation; NF-κB (nuclear factorkappa B)

非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH)是富裕国家面临的严重健康问题,患病率为25.0%~46.2%^[1]。研究表明,脂质沉积、胰岛素抵抗(insulin resistance, IR)、氧化应激、脂质过氧化和炎症反应参与NASH的发生发展。这些机制相互作用,其中炎症反应在非酒精性脂肪性肝病的进化中起着重要的交联作用^[2]。目前还没有公认的治疗NASH的药物,因此寻找新的疗法极为迫切。

核因子Kappa B(nuclear factor-kappa B, NF-κB) 在炎症相关细胞因子的转录中起关键作用^[1]。当细 胞受到外界刺激,如脂多糖、游离脂肪酸等,细胞质 中的NF-κB被激活,进入细胞核,并特异性结合其靶 DNA序列,从而调节促炎因子的释放,包括肿瘤坏 死因子-α(tumor necrosis factor-α, TNF-α)、白细胞介 素 1β(interleukin-1beta, IL-1β)和白细胞介素 6(interleukin-6, IL-6)。通过这种方式, NF-κB在一些生理 和病理反应中起着关键的作用^[3-5]。

人参皂苷Rg1是人参中最有效的成分之一^[6]。 我们前期的研究表明, Rg1通过改善肝细胞内质网应 激和凋亡减轻CCL₄诱导的急性肝衰竭;并通过阻断 凋亡途径和炎症因子的释放来缓解酒精性肝炎^[7-8]。 上述研究提示, Rg1在肝病中可能具有保护作用。而 HepG2细胞和L02细胞因其生命周期不受限、且保 留了肝实质细胞的大部分生化功能, 逐渐成为了肝 脏疾病研究公认的选择^[9]。本研究采用这两种细胞 建立NASH的体外模型, 进一步探讨人参皂苷Rg1在 NASH治疗中的作用及其潜在机制。

1 材料与方法

1.1 材料

HepG2细胞株购自武汉普诺赛生命科技有限 公司; L02细胞株由实验室保存; 人参皂苷Rg1(纯度 >98%)购自大连美仑生物技术有限公司; 油酸、棕 榈酸、DMSO均购自美国Sigma-Aldrich公司; 胎牛 血清购自美国Gibco公司; 高糖DMEM培养基购自 美国Hyclone公司; 不含游离脂肪酸BSA购自北京

索莱宝科技有限公司;油红染色试剂盒购自北京索 莱宝科技有限公司; ALT(alanine aminotransferase)、 AST(aspartate aminotransferase)检测试剂购自重庆 理真科技有限公司; 人IL-1β、IL-6、TNF-α ELISA 试剂盒购自深圳欣博盛生物技术有限公司; 总RNA 提取试剂盒(离心柱)购自北京百泰克生物技术有限 公司; 引物由美国Invitrogen公司设计; 逆转录试剂 盒、All-in-one cDNA Synthesis SuperMix、SYBR green II均购自上海毕傲图生物科技有限公司; RIPA 裂解液、蛋白酶抑制剂、细胞核蛋白抽提试剂 盒、细胞质蛋白抽提试剂盒均购自上海碧云天生 物技术有限公司; GAPDH抗体购自沈阳万类生物 科技有限公司; NF-κB抗体、p-NF-κB(Ser526)抗体、 IL-1β抗体、IL-6抗体、TNF-α抗体、Histone H1抗 体、抗兔IgG HRP辣根过氧化物酶标记均购自美国 Cell Signaling Technology公司。

1.2 细胞培养及分组

将HepG2细胞和L02细胞分别培养在含10%胎牛 血清的高糖DMEM培养基中,置于含5% CO₂的37 ℃ 恒温培养箱中。当6孔板内的细胞密度达到60%~70% 时,分成四组分别予不同的处理。对照组:普通培养基 培养(含等浓度溶解介质);模型组:1 mmol/L游离脂肪 酸(free fatty acid, FFA)(油酸:棕榈酸=2:1)培养24 h后 换普通培养基(含等浓度溶解介质);低剂量Rg1组:1 mmol/L FFA培养24 h,继以20 μg/mL Rg1干预6 h;高 剂量Rg1组:1 mmol/L FFA培养24 h,继以40 μg/mL Rg1 干预6 h。

1.3 生化指标测定

全自动生化仪检测ALT和AST的含量。

1.4 酶联免疫吸附试验

取各组培养上清液进行实验,根据ELISA试 剂盒说明书进行操作,检测上清液中IL-1β、IL-6、 TNF-α的表达水平,酶标仪在450 nm波长下检测吸 光度值,用标准曲线计算浓度。

1.5 荧光定量PCR

采用SYBR green II预混液于荧光定量PCR仪

上进行定量测定。 β -actin基因作为内对照。基因 引物序列如下: *IL-1β*(sense: 5'-ATG ATG GCT TAT TAC AGT GGC AA-3'; antisense: 5'-GTC GGA GAT TCG TAG CTG GA-3')。*IL-6*(sense: 5'-ACT CAC CTC TTC AGA ACG AAT TG-3'; antisense: 5'-CCA TCT TTG GAA GGT TCA GGT TG-3')。*TNF-* α (sense: 5'-GAG GCC AAG CCC TGG TAT G-3'; antisense: 5'-CGG GCC GAT TGA TCT CAG C-3')。 β -actin(sense: 5'-GCC GAC AGG ATG CAG AAG G-3'; antisense: 5'-TGG AAG GTG GAC AGC GAG G-3')。

1.6 Western blot

细胞处理好后,用预冷的PBS洗3次,加入RIPA 裂解液和蛋白酶抑制剂,用细胞刮轻柔刮下细胞,离 心后收集上清液为细胞总蛋白;加入细胞质蛋白抽 提试剂或细胞核蛋白抽提试剂,按照说明书操作,收 集上清,此为胞质或胞核蛋白。BCA法测定蛋白浓 度后用6×蛋白上样缓冲液稀释配平,沸水中充分变 性5 min。蛋白样品加样后经电泳、转膜至PVDF膜上; 5%的脱脂奶粉封闭1 h;4 °C冷藏室摇床过夜孵育相 应一抗;PBST洗膜3次,每次10 min;室温摇床上孵 育二抗1 h;PBST洗膜3次,每次10 min;ECL试剂显 影。

1.7 免疫荧光

细胞爬片处理后,4%预冷多聚甲醛固定20 min, PBS清洗3次,0.2%聚乙二醇辛基苯基醚(Triton X-100)透化细胞膜10 min,5% BSA封闭液常温封闭 30 min, PBS清洗后加入NF-κB一抗,4°C孵育过夜。 次日去除一抗,加入绿色荧光标记山羊抗兔IgG二 抗,室温避光孵育1 h, PBS清洗3次后DAPI复染3 min, 抗荧光淬灭剂封片,共聚焦显微镜观察结果并采集 图片。

1.8 统计学分析

采用SPSS 20.0软件进行统计分析,所有数据均 以均数±标准差(*x*±s)表示。多组间比较单因素方差 分析,分析前行方差齐性检验,方差齐用SNK-q法, 方差不齐用非参数检验,检验标准α=0.05。

2 结果

2.1 人参皂苷Rg1能减少细胞上清转氨酶的含量

与对照组相比, HepG2和L02细胞模型组上清的 ALT、AST均明显增加(P<0.05)。低剂量和高剂量 Rg1能不同程度地降低细胞上清ALT、AST的含量 (P<0.05)(图1)。

2.2 人参皂苷Rg1能减少细胞上清炎症因子的 释放

ELISA结果显示,两种细胞模型组上清的炎症 因子IL-1、IL-6、TNF-α的表达均明显高于对照组 (P<0.05)。低剂量和高剂量Rg1能不同程度地减少 IL-1、IL-6、TNF-α的释放,差异具有统计学意义 (P<0.05)(图2)。

2.3 人参皂苷Rg1能减少炎症相关基因*IL-1β*、 *IL-6、TNF-α*的表达

与对照组相比,两种细胞的模型组NF-κB通路 炎症相关基因*IL-1β、IL-6、TNF-α*表达明显增加 (*P*<0.05)。与模型组比较,低剂量和高剂量Rg1均 能不同程度地减少*IL-1β、IL-6、TNF-α*基因的表达 (*P*<0.05)(图3)。

2.4 人参皂苷Rg1能减少NF-κB磷酸化和IL-1β、 IL-6、TNF-α蛋白的表达

Western blot结果显示,与对照组相比,模型组的p-NF- κ B、IL-1 β 、IL-6、TNF- α 蛋白的表达明显 增加(P<0.05)。经低剂量及高剂量Rg1干预后,两组 细胞NF- κ B的磷酸化、IL-1 β 、IL-6、TNF- α 的表达 均显著下降,差异具有统计学意义(P<0.05)。各组 间total-NF- κ B无明显差异(P>0.05)(图4)。

2.5 人参皂苷Rg1能抑制NF-κB P65的核转位

免疫荧光结果显示, 对照组的NF-κB P65蛋白 主要表达于细胞质内, 模型组的P65大多被激活进入 核内; 经低或高剂量Rg1处理后, 可见NF-κB P65不 同程度地出核进入胞质(图5)。且Western blot结果 显示, 两种细胞模型组P65主要在细胞核中表达, 细 胞质中表达较少; 而经Rg1干预后, 细胞质中的P65 显著增加, 细胞核中的P65也明显减少(图6)。

3 讨论

非酒精性脂肪性肝炎NASH是与IR和遗传易感 性密切相关的获得性代谢疾病,常见于高脂血症、 II型糖尿病、代谢综合征等患者^[10]。其发病机制 逐渐由原来的"二次打击学说"变成了"多次打击学 说"^[11]。简单地说,脂质代谢物的过度聚集可以导 致线粒体功能障碍、内质网应激,从而引起各种 炎症级联反应,包括释放一些氨基转氨酶和炎性 因子,进而导致细胞损伤。前期的研究表明,人参

^{*}P<0.05, **P<0.01, ***P<0.001, 与模型组相比。

^{*}P<0.05, **P<0.01, ***P<0.001 compared with the model group.

图2 细胞上清炎症因子的表达 Fig.2 Expression of inflammatory cytokines in cellular supernatant

Fig.3 Expression of inflammation-related genes

皂苷Rg1的安全性较高,对正常细胞影响极小^[12];且 对各类肝病均有不同程度的改善作用^[7-8,13]。然而, 并没有Rg1针对NASH的研究,我们目前的研究旨在 探索Rg1在NASH中的潜在作用。

本研究采用1 mmol/L游离脂肪酸处理HepG2 细胞或L02细胞成功建立NASH细胞模型,再用20或 40 µg/mL人参皂苷Rg1来探讨其在NASH细胞模型 中的作用。我们发现低、高剂量均可降低游离脂 肪酸诱导的炎症指标,且两者之间无显著性差异。 肝损伤的敏感标志物ALT、AST, 在模型组中的表 达显著高于对照组, 而Rg1的干预对肝损伤具有保 护作用。库普弗细胞被普遍认为是肝脏中炎症因 子的主要来源, 如IL-1β、IL-6、TNF-α; 早期的研究 主要集中于库普弗细胞的炎症通路而忽略了肝细 胞[14]。值得注意的是,我们的实验发现,炎症介质 在游离脂肪酸诱导的NASH细胞培养上清中显著升 高。此外, PANAHI等^[15]发现高糖可以增加HepG2 细胞中炎症因子的表达。我们的体外结果也表明, Rg1可以显著降低NASH细胞模型上清液中炎症因 子的表达。

因NASH的发病机制涉及多条通路,所以针 对NASH的治疗应靶向细胞分子事件的关键节点 才能达到治疗的目的。过去的研究证实, NF-кB可 调节细胞炎症因子的释放,且通过阻断NF-κB的活 化可以显著降低下游促炎因子的释放,包括IL-1β、 IL-6、TNF-α等^[16]。而这些促炎因子在IR的发生发 展过程中也起着重要的作用, 它们能够促进IR的发 生,从而促进NASH病程的进展。其中TNF-α被认 为是非酒精脂肪肝(non-alcoholic fatty liver disease, NAFLD)进展为NASH的一个关键细胞因子,它由肥 大细胞、巨噬细胞、脂肪细胞等细胞分泌,可参与 多种炎性疾病。有研究表明, TNF-α可以通过增加 固醇调节原件结合蛋白-1c(sterol regulatory element binding protein, SREBP-1c)的表达引起肝细胞脂肪 变性,并有调节SREBP-1c成熟的作用。同时, TNF-α 也能参与肝细胞线粒体的能量代谢,使其产生更多 的活性氧(reactive oxygen species, ROS)和其他促炎 因子导致肝细胞损伤加重^[17]。与TNF-α相似, IL-1β 也能诱发其他促炎因子的表达,在炎症反应和免疫 应答的启动中具有重要作用。同时, IL-1β还能促

*P<0.05, **P<0.01, ***P<0.001, 与模型组相比。

P < 0.05, P < 0.01, P < 0.01, P < 0.001 compared with the model group

图4 NF-κB通路蛋白的表达 Fig.4 Expression of NF-κB pathway proteins

进胰岛细胞的一氧化氮生成和细胞凋亡,引起细胞 选择性的破坏,产生IR^[18]。IL-6是由巨噬细胞、上 皮细胞、脂肪细胞、肝细胞等分泌产生,具有多 种生理学效应,其浓度与炎症反应程度密切相关。 且IL-6能诱导肝细胞凋亡,引起肝损伤,从而参与 NASH的发生发展^[19]。我们目前的研究表明,Rg1可 以抑制NF-κB P65的磷酸化,并阻止P65进入细胞核, 从而减少下游促炎基因*IL-1β、TNF-α、IL-6*的表达, 改善细胞炎症反应。这些变化与观察到的细胞因子 表达的变化一致。因此,我们推测,Rg1可能通过降 低NF-κB的活性来减轻游离脂肪酸诱导的肝脏炎症, 但其具体的调控机制以及上游的可能直接作用靶点 仍待进一步研究。

综上所述,我们发现,人参皂苷Rg1可以改善高 脂诱导的HepG2细胞和L02细胞损伤、促进炎症介 质的释放,这些作用可能归因于NF-кB通路。尽管 还缺乏一些基因手段来提供更充足的证据,但我们 的研究结果表明,Rg1可能是治疗NASH的新型药。 未来,我们将进一步探讨该天然药物在体外和体内 的可能机制及临床应用。

DAPI: 4',6-二脒基-2-苯基吲哚。 DAPI: 4',6-diamidino-2-phenylindole.

图5 免疫荧光检测NF-κB P65的核转位 Fig.5 Detection of nuclear translocation of NF-κB P65 by Immunofluorescence

GAPDH: 甘油醛-3-磷酸脱氢酶。

GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

图6 Western blot检测细胞内NF-кВ P65蛋白表达 Fig.6 Detection of NF-кВ P65 protein expression in cells by Western blot

参考文献 (References)

- DIEHL A M, DAY C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis [J]. N Engl J Med, 2017, 377(21): 2063-72.
- [2] LUMENG C N, SALTIEL A R. Inflammatory links between obesity and metabolic disease [J]. J Clin Invest, 2011, 121(6): 2111-7.
- [3] RUSSELL J O, LU W Y, OKABE H, et al. Hepatocyte-specific β-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes [J]. Hepatology, 2019, 69(2): 742-59.
- [4] GUNDOGDU Z, DEMIREL BAYAR M KI, et al. Dose-dependent anti-inflammatory effect of ketamine in liver ischemiareperfusion injury [J]. Middle East J Anaesthesiol, 2016, 23(6): 655-63.
- [5] MOREL K L, ORMSBY R J, SOLLY E L, et al. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide [J]. Clin Exp Metastasis, 2018, 35(7): 649-61.
- [6] MOHANAN P, SUBRAMANIYAM S, MATHIYALAGAN R, et al. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions [J]. J Ginseng Res, 2018, 42(2): 123-32.
- [7] 罗欢, 黄文祥, 阳成, 等. 人参皂苷Rg1对小鼠急性肝衰竭的治疗作用和机制研究[J]. 中华肝脏病杂(LUO H, HUANG W X, YANG C, et al. Therapeutic effect and mechanism of ginsenoside Rg1 on acute liver failure in mice [J]. Chin J Hepatol), 2017 25(3): 217-22.
- [8] ZHAO J, SHI Z, LIU S, et al. Ginsenosides Rg1 from panax ginseng: a potential therapy for acute liver failure patients? [J]. Evid Based complement Alternat Med, 2014, doi: 10.1155/2014/538059.
- [9] WILLEBRORDS J, PEREIRA I V, MAES M, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research [J]. Pro Lipid Res, 2015, 59: 106-25.
- [10] REIBE S, FEBBRAIO M A Relieving ER stress to target NASHdriven hepatocellular carcinoma [J]. Nat Rev Endocrinol, 2019,

15(2): 73-4.

- [11] FANG Y L, CHEN H, WANG C L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from "two hit theory" to "multiple hit model" [J]. World J Gastroenterol, 2018, 24(27): 2974-83.
- [12] GAO Y, CHU S, ZHANG Z, et al. Hepataprotective effects of ginsenoside Rg1-A review [J]. J Ethnopharmacol, 2017, 206: 178-83.
- [13] WEI X, CHEN Y, HUANG W. Ginsenoside Rg1 ameliorates liver fibrosis via suppressing epithelial to mesenchymal transition and reactive oxygen species production *in vitro* and *in vivo* [J]. BioFactors, 2018, doi: 10.1002/biof.1432.
- [14] ADAK M, DAS D, NIYOGI S, et al. Inflammasome activation in Kupffer cells confers a protective response in nonalcoholic steatohepatitis through pigment epithelium-derived factor expression [J]. FASEB J 2018, doi: 10.1096/fj.201800190.
- [15] PANAHI G, PASALAR P, ZARE M, et al. High glucose induces inflammatory responses in HepG2 cells via the oxidative stressmediated activation of NF-κB, and MAPK pathways in HepG2 cells [J]. Arch Physiol Biochem, 2018, 124(5): 468-74.
- [16] 李平, 胡建燃, 铁军. 柴胡总皂苷通过Akt/NF-κB信号通路抑制 胃癌细胞MGC80-3的增殖和迁移[J]. 中国细胞生物学学报(LI P, HU J R, TIE J. Total saponins of Bupleurum chinense inhibits proliferation and migration of gastric cancer cell line MGC80-3 via Akt/NF-kB signaling pathway [J]. Chin J Cell Biol), 2018, 40(10): 1727-35.
- [17] LOPETUSO L R, MOCCI G, MARZO M, et al. Harmful effects and potential benefits of anti-tumor necrosis factor (TNF)-α on the liver [J]. Int J Mol Sci, 2018, 19(8). pii: E2199.
- [18] SCHNEIDER AC, GREGORIO C, URIBE-CRUZ C, et al. Chronic exposure to ethanol causes steatosis and inflammation in zebrafish liver [J]. World J Hepatol, 2017, 9(8): 418-26.
- [19] KRAAKMAN M J, KAMMOUN H L, ALLEN T L, et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance [J]. Cell Metab, 2015, 21(3): 403-16.